Turbo tăng áp cho động cơ ô tô

Ngày đăng: 07/04/2020 Lượt xem: 531

Turbo tăng áp cho động cơ ô tô

1. Khái niệm Turbo tăng áp và tác dụng của nó

1.1 Turbo tăng áp là gì?

Hệ thống (turbo) tăng áp tuabine là hệ thống tăng áp suất khí nạp vào buồng đốt của động cơ, nhằm tăng lượng không khí giúp hoàn thiện chế độ cháy. 
Thông thường trên động cơ bố trí một bơm tăng áp thường được gọi là “bộ tăng áp”. Áp suất khí nạp vào buồng đốt có thể đạt được lớn nhất khoảng 2 bar. Bộ tăng áp đó được gọi là bộ tăng áp một cấp. 
Trên một số động cơ, do nhu cầu nâng cao chất lượng đốt cháy nhiên liệu, đã sử dụng loại tăng áp hai cấp “tăng áp kép”. Hệ thống tăng áp cho phép hai lần nén khí nạp để tạo nên áp suất cao hơn (lớn nhất khoảng 2,8 bar). Khi tăng áp như vậy nhiệt độ khí nạp tăng cao do vậy nhất thiết phải làm nguội khí nạp thông qua việc đưa khí qua két mát. 
Như vậy tăng áp hai lần đòi hỏi công suất động cơ cao, tổn thất năng lượng cho tăng áp lớn, không phải công nghệ nước nào cũng có khả năng thực hiện.

1.2 Tác dụng của Turbo tăng áp là gì ?

Hệ thống  tăng áp thường được lắp trong các động cơ diesel cỡ lớn. Một turbo có thể giúp làm tăng đáng kể công suất của một động cơ mà không cần phải tăng trọng lượng bản thân động cơ đó. Đây chính ưu điểm to lớn mà các turbo tăng áp mang lại.
Turbo tăng áp cho phép một động cơ đốt được nhiều nhiên liệu và không khí hơn bằng cách nén chúng nhiều hơn vào trong các xilanh. Thông thường việc tăng lưu lượng khí nạp bằng turbo tăng áp tạo ra áp suất khoảng 6 đến 8 Pounds trên diện tích một inch vuông (PSI). Áp suất khí quyển thông thường vào khoảng 14,7 PSI ở mực nước biển, có thể thấy rằng chúng làm tăng thêm khoảng 50% lượng khí nén thêm vào trong động cơ. Cho nên có thể làm tăng thêm khoảng 50% công suất động cơ. Nhưng hiệu quả tăng công suất không như vậy, thực tế chúng chỉ có thể giúp tăng công suất động cơ khoảng 30 đến 40% do ảnh hưởng của tổn hao năng lượng.
Xe hơi hiện đại đòi hỏi những động cơ gọn nhẹ, hiệu suất sử dụng nhiên liệu cao, công suất và mô-men xoắn lớn. Để đáp ứng các tiêu chuẩn này, tăng áp là giải pháp phổ biến hiện nay. Đây là kỹ thuật nâng cao áp suất của hỗn hợp nhiên liệu khi đưa vào buồng đốt.

2. CẤU TẠO VÀ CHỨC NĂNG CỦA TUABIN TĂNG ÁP TRÊN ĐỘNG CƠ ÔTÔ

2.1 Cấu tạo của Turbo tăng áp

turbo-tang-ap-dong-co-oto-1
turbo-tang-ap-dong-co-oto-2
Tuabin nạp khí (tuabin tăng áp) bao gồm:
Khoang tuabin
Khoang nén khí
Khoang trung tâm
Cánh tuabin
Cánh nén khí
Các ổ trục tự lực hoàn toàn
Van cửa xả
Bộ chấp hành

2.2 Chức năng của từng bộ phận của Turbo tăng áp

Khoang tuabin
- Tạo khoảng trống cho dòng khí xả đi qua để làm quay bánh tuabin, gắn  với ống xả và van cửa xả.
Khoang khí nén 
- Tạo khoảng không gian để bánh nén khí hoạt động .
Khoang trung tâm 
- Bảo vệ ổ trục tự lực tuần hoàn và trục kết nối giữa bánh tuabin va bánh nén khí
Cánh tuabin
- Quay, dẫn động bánh nén khí thông qua trục kết nối giữa bánh tuabin và bánh nén khí
Cánh nén khí
- đẩy không khí vào trong các xilanh
- hướng dòng không khí từ tâm quay theo biên dạng cánh hướng ra ngoài
Các ổ trục tự lực hoàn toàn
- Đỡ trục tuabin, làm mát trục tuabin, giúp trục quay với lực cản ma sát thấp
Van cửa xả
- giữ ổn định cho áp suất nạp
Bộ chấp hành
- Điều khiển van cửa xả

2.3 Một số bộ phận đặc biệt của tuabin tăng áp

Một trong những vấn đề chính đối với tuabin tăng áp đó là chúng không làm tăng công suất ngay lập tức khi bạn đạp ga. Phải mất khoảng vài giây đồng hồ để tuabin tăng vận tốc trước khi tác dụng khuyếch đại công suất. Kết quả là một độ trễ xuất hiện khi bạn đạp ga và sau đó chiếc xe bất thình lình chồm lên khi tuabin bắt đầu làm việc
turbo-tang-ap-dong-co-oto-3 
Một cách để làm giảm độ trễ tác dụng của tuabin là giảm tác dụng quán tính của các bộ phận quay, chính là làm giảm trọng lượng bản thân của chúng. Điều này cho phép cánh tuabin và cánh nén khí có thể tăng tốc rất nhanh và hỗ trợ tăng cường công suất cho động cơ sớm hơn. Một cách chắc chắn để giảm độ quán tính của cánh tuabin và cánh nén khí là chế tạo chúng có kích thước nhỏ hơn. Một tuabin có kích thước nhỏ hơn sẽ tác dụng giúp tăng cường công suất cho động cơ nhanh hơn ở tốc độ động cơ thấp nhưng có thể không có tác dụng tăng công suất ở tốc độ động cơ cao khi một lượng lớn khí nạp được nén vào trong động cơ. Nó cũng nguy hiểm hơn khi tốc độ quay của tuabin quá nhanh ở tốc độ động cơ cao khi có nhiều khí xả đi qua các cánh tuabin.
Các tuabin tăng áp có kích thước lớn hơn có thể giúp tăng công suất động cơ nhiều hơn ở tốc độ cao nhưng lại sinh ra một độ trễ tác dụng rất lớn bởi vì nó mất nhiều thời gian hơn để tăng tốc độ quay của cánh tuabin và cánh nén khí do chúng nặng hơn. Để khắc phục được hạn chế này, người ta đã chế tạo một số bộ phận đặc biệt đi kèm với nó.
Hầu hết các động cơ có gắn tuabin tăng áp để có một mức hao phí nhất định, điều này bắt buộc phải sử dụng một tuabin tăng áp nhỏ hơn để giảm độ trễ trong khi ngăn nó khỏi quay quá nhanh ở tốc độ động cơ cao. Để ngăn hao tổn, trong tuabin bố trí một van đặc biệt cho phép khí xả đi tắt qua các cánh tuabin. Van này có độ nhạy lớn với sự tăng áp đột ngột. Nếu áp suất tăng lên quá cao, nó có thể xác nhận rằng tuabin quay quá nhanh và mở ra cho phép một lượng khí xả đi vòng qua cánh tuabin và làm giảm tốc độ tuabin.
turbo-tang-ap-dong-co-oto-4
Một số tuabin tăng áp sử dụng vòng bi cầu thay vì sử dụng loại ổ đệm chất lỏng để đỡ lấy trục của tuabin. Nhưng chúng không phải là loại ổ bi cầu thông thường, chúng là các ổ bi tự lựa có độ chinh xác rất cao được làm từ loại vật liệu cao cấp để có thể chịu được tốc độ quay và nhiệt độ sinh ra từ các tuabin tăng áp. Chúng cho phép các trục tuabin có thể quay với lực ma sát sinh ra thấp hơn các loại ổ đỡ chất lỏng được sử dụng trong hầu hết các tuabin tăng áp. Chúng cho phép các trục có trọng lượng nhẹ hơn và quay chậm hơn có thể làm việc hiệu quả. Đây là điều giúp các tuabin tăng áp có thể tăng tốc nhanh hơn, giảm được độ trễ đến mức thấp hơn.
*Cánh điều chỉnh
Cánh điều chỉnh dùng để thay đổi tốc độ và hướng của luồng khí xả để tạo ra áp suất nạp tối ưu cho các tốc độ cao cũng như thấp; cánh điều chỉnh được lắp ở vành ngoài của tuabin và được điều khiển bởi ECU của động cơ.
 
Hoạt động ở tốc độ thấp
Khi khe hở giữa các cánh điều chỉnh thu hẹp lại (đóng) thì tốc độ của luồng khí xả đi vào bánh tuabin sẽ tăng lên và bánh tuabin làm việc với hiệu suất cao hơn. Nhờ thế, khi áp suất của khí xả tăng lên thì áp suất nạp càng tăng nhanh hơn, và công suất động cơ tăng lên thậm chí cả khi đang chạy với tốc độ thấp.
 
Hoạt động ở tốc độ cao/tải trọng nặng
Khi khe hở giữa các cánh điều chỉnh mở rộng ra, áp suất nạp được khống chế, vì hướng của luồng khí xả thay đổi và hiệu suất tác dụng lên tuabin giảm xuống. Như thế, tốc độ của bánh tuabin được khống chế, áp suất nạp được khống chế trong giới hạn nhất định, giúp động cơ cải thiện tiêu hao nhiên liệu và công suất.
 
Các cánh tuabin được làm bằng gốm thường nhẹ hơn các cánh tuabin được làm bằng kim loại phổ biến trong hầu hết các tuabin tăng áp. Trái lại, chúng lại cho phép các tuabin quay nhanh hơn, và giảm được độ trễ tác dụng.
*Bộ làm mát khí nạp
Khi không khí được nén lại, nó được hâm nóng lên và khi không khí nóng lên, nó sẽ giãn nở. Bởi vậy áp suất trong tuabin tăng lên một cách đáng kể và kết quả là không khí nóng lên trước khi đi vào động cơ. Để tăng công suất của động cơ, phải đạt được một mục tiêu là đưa thêm nhiều phân tử khí vào trong xilanh mà không làm tăng áp suất khí.
Để đạt được điều này, một bộ làm mát trung gian hay một bộ làm mát khí nạp được lắp thêm vào hệ thống, nó được xem như là một két làm mát nhưng chỉ khác là không khí được thổi đi vào và đi ra khỏi bộ làm mát trung gian này. Có hai kiểu bộ làm mát trung gian: Kiểu làm mát bằng không khí và kiểu làm mát bằng nước. Hiện nay chỉ có kiểu làm mát bằng không khí là được sử dụng. Tuỳ theo kiểu động cơ mà vị trí lắp bộ làm mát trung gian có khác nhau. Khí nạp được thổi qua một đường ống dẫn kín bên trong bộ làm mát trong khi đó không khí từ bên ngoài được đẩy cưỡng bức qua các cánh tản nhiệt của nó bằng quạt làm mát động cơ.
 
Bộ làm mát khí nạp giúp tăng công suất của động cơ bằng cách làm mát khí nén đi ra từ cánh nén khí của tuabin trước khi đi vào trong động cơ. Điều này có nghĩa là nếu tuabin tăng áp tạo ra một áp suất nén khoảng 7 PSI, hệ thống làm mát khí nạp sẽ làm nguội không khí có áp suất 7 PSI này, có nghĩa là nó trở nến đậm đặc hơn và chứa nhiều phân tử khí hơn một khối không khi nóng.
Một tuabin tăng áp cũng giúp tăng mật độ khí nén khi càng lên cao sự đậm đặc của không khí càng bị giảm đi. Động cơ bình thường thực tế bị giảm công suất khi càng lên cao so với mực nước biển bởi vì mỗi hành trình nén của piston, động cơ sẽ nén được ít không khí hơn về khối lượng. Một động cơ có tuabin tăng áp cũng bị giảm công suất nhưng sự giảm công suất này sẽ ít ảnh hưởng hơn bởi vì không khí loãng hơn dễ được đẩy qua các cánh nén khí của tuabin hơn.
Các loại xe cũ với động cơ sử dụng hệ thống nhiên liệu kiểu cacbuarato, tự động tăng tỷ lệ nhiên liệu để phù hợp hơn với sự tăng lưu lượng khí nạp đi vào trong các xilanh. Các loại xe hiện đại ngày nay sử dụng loại động cơ phun nhiên liệu điện tử cũng đạt được điều này ở mức độ tối ưu hơn. Hệ thống phun nhiên liệu điện tử sử dụng các cảm biến ôxi trong đường ống xả để đo tỷ lệ không khí – nhiên liệu một cách chính xác. Bởi vậy, hệ thống này sẽ tự động tăng lượng nhiên liệu nạp vào nếu được trang bị thêm tuabin tăng áp.
Nếu tuabin tăng áp tăng lượng khí nạp nhanh quá mức đòi hỏi phải tăng lượng nhiên liệu phun vào phù hợp, hệ thống phun nhiên liệu có thể không cung cấp đủ nhiên liệu, cũng như là chương trình phần mềm trong bộ điều khiển không cho phép hoặc bơm nhiên liệu và vòi phun không đủ khả năng cung cấp đủ cho nhu cầu. Trong trường hợp này, một số điều chỉnh khác được thiết lập để thu được hiệu quả cao nhất từ tuabin tăng áp.  Đối với động cơ điêzen, bộ bù nạp sẽ tăng lượng bơm nhiên liệu cực đại phù hợp với áp suất nạp.
Trong động cơ điều khiển bằng máy tính, lượng không khí nạp được theo dõi bằng cảm biến lưu lượng khí nạp, còn áp suất nạp được theo dõi bằng bộ cảm biến áp suất của tuabin nạp và sự tăng lượng phun nhiên liệu cực đại được điều khiển bằng ECU của động cơ.

3. NGUYÊN LÝ HOẠT ĐỘNG CỦA TUABIN TĂNG ÁP TRÊN ĐỘNG CƠ ÔTÔ

 
Bên trong 1 tuabin tăng áp
 
Nguyên lý hoạt động của tuabin tăng áp là dòng khí xả từ các xilanh thổi ra tạo áp lực lên các cánh tuabin làm tuabin quay. Càng nhiều khí xả đi qua các cánh tuabin thì tuabin quay càng nhanh. Cánh tuabin phải chịu được nhiệt và có độ bền cao vì nó tiếp xúc trực tiếp với khí xả, quay với tốc độ cao và trở nên rất nóng. Bởi vậy, nó được làm bằng hợp kim siêu chịu nhiệt hoặc bằng gốm. Mặt khác trên một đầu còn lại của trục tuabin, cánh nén khí được gắn vào để đẩy không khí vào trong các xilanh. Các cánh nén khí là một loại bơm ly tâm, nó hướng dòng không khí từ tâm quay theo biên dạng cánh hướng ra ngoài. Để có thể tăng tốc độ quay lến đến 150.000 vòng/phút, trục của tuabin được đỡ bởi một ô bi đặc biệt. Hầu hết các ổ bi đều bị quá hủy ở tốc độ như thế, cho hầu hết các turbo tăng áp đều sử dụng loại ổ đỡ chất lỏng. Loại ổ bi này đỡ lấy trục tuabin bằng một lớp dầu cực mỏng. Điều này đạt được hai mục đích: trục quay của tuabin được làm mát và nó cho phép trục quay với lực cản ma sát thấp…Van cửa xả được lắp trong khoang tuabin. Khi van này mở thì một phần khí xả sẽ đi tắt qua ống xả, nhờ thế mà giữ ổn định cho áp suất nạp, khi áp suất nạp đạt đến trị số đã định (khoảng 0,7 kg/cm2). Việc đóng mở van được kiểm soát bởi bộ chấp hành.

4. PHÂN LOẠI, ĐÁNH GIÁ CÁC LOẠI TUABIN TĂNG ÁP TRÊN ĐỘNG CƠ

Tăng áp cho động cơ đốt trong được chia làm 2 loại: turbocharger và supercharger. 

4.1 Turbocharger:

Có thể hiểu turbocharger như một chiếc bơm không khí vận hành nhờ năng lượng của khí thải từ động cơ. Khi hỗn hợp khí thải nóng bị đẩy ra khỏi động cơ, chúng sẽ được dẫn tới một tuốc-bin cánh quạt có tốc độ quay rất nhanh (từ 30.000 – 120.000 vòng/phút). Tuốc-bin cánh quạt này sẽ truyền động lực qua trục tới một tuốc-bin cánh quạt khác, được gọi là máy nén khí để nén hỗn hợp khí và nhiên liệu đốt vào động cơ.

Sơ đồ tăng áp turbocharger

Ưu điểm của turbocharge: tận dụng được năng lượng khí thải, tiếng động phát ra từ ống bô êm hơn và không cần tới bộ giảm thanh lớn.
 Nhược điểm của turbocharge: giá thành chế tạo cao hơn động cơ không tăng áp do bổ sung thêm các chi tiết; phải cải tiến vật liệu trong xy-lanh, buồng đốt…vv, để chịu được áp suất lớn hơn. Và nhược điểm lớn nhất của turbocharge là “độ trễ”, nghĩa là khoảng thời gian từ khi đạp ga cho tới khi động cơ bắt đầu “tăng tốc”. Nguyên nhân chính gây ra điều này là do áp suất tăng áp phụ thuộc vào tốc độ luân chuyển của khí thải nên turbocharge không tạo ra nhiều lực nén khi động cơ có tốc độ tua thấp do đó phải mất thời gian để có đủ áp suất. Trong những chiếc xe cũ trước đây, độ trễ này có thể tạo ra cảm giác như xe đang dừng lại. Ngược lại, vận tốc tua của động cơ càng nhanh thì áp suất mà tăng áp tạo ra sẽ càng lớn và trong thường hợp này, turbocharge lại phải cần tới một chiếc van gọi là “cửa xả” (wastegate) để xả lượng khí vượt mức qui định.

Nhờ sử dụng turbocharger nhỏ hơn, turbocharger có thể thay đổi thiết diện cánh quạt hoặc kết hợp cả hai giải pháp này với nhau, các động cơ hiện đại ngày nay hầu như đã loại bỏ được tình trạng trễ này. Động cơ 6 xylanh tăng áp kép của BMW là dẫn chứng điển hình, nó có thể tạo ra sức mạnh ngay lập tức ở bất kỳ thời điểm hay tốc độ nào.

4.2 Supercharger

Supercharge cũng nén khí, nhưng thông qua một hệ thống cơ khí. Nó thường vận hành nhờ một dây cua-roa liến kết với trục khuỷu của động cơ. Dây cuaroa này làm quay hai rôto nằm trong hộp supercharge để nén không khí vào cổ góp nạp. Supercharge cần ít hệ thống ống dẫn hơn turbocharge, nhưng lại làm tăng đáng kể tải trọng lên trục khuỷu và dây cuaroa.

 

Bánh răng trụ truyền lực
Xe hơi hiện đại đòi hỏi những động cơ gọn nhẹ, hiệu suất sử dụng nhiên liệu cao, công suất và mô-men xoắn lớn. Để đáp ứng các tiêu chuẩn này, tăng áp là giải pháp phổ biến hiện nay. Đây là kỹ thuật nâng cao áp suất của hỗn hợp nhiên liệu khi đưa vào buồng đốt.

4.3 Động cơ sử dụng hai turbo và nhiều turbo.

Một số động cơ sử dụng hai turbo tăng áp với kích thước khác nhau. Turbo có kích thước nhỏ hơn quay với tốc độ nhanh hơn, giảm được độ trễ tác dụng trong khi turbo có kích thước lớn hơn có thể đạt khả năng tăng công suất nhanh hơn ở tốc độ động cơ cao.
 

Khi hai tuabin cùng làm việc ở điều kiện tải nhẹ hoặc tốc độ thấp, tính thích ứng của động cơ được cải thiện, ví dụ thích ứng với tăng tốc. Khi hai tuabin cùng làm việc ở điều kiện tải nặng hoặc tốc độ cao, động cơ có thể sản ra công suất cao. Khi chỉ có một tuabin thì động cơ khó đạt được hiệu quả cao ở cả hai chế độ làm việc với tải trọng nặng và tải trọng nhẹ. Trong trường hợp này chỉ có thể đạt được hiệu quả cao ở một trong hai chế độ. Tuy nhiên, tuabin kép sử dụng van điều khiển khí xả và van phân dòng. Nó điều khiển cho một tuabin làm việc ở chế độ tải nhẹ và hai tuabin làm việc ở chế độ tải nặng hoặc tốc độ cao, để tăng tính thích ứng của động cơ ở mọi tốc độ và đạt được công suất cao. Khi không khí được nén lại, nó được hâm nóng lên và khi không khí nóng lên, nó sẽ giãn nở. Bởi vậy áp suất trong turbo tăng lên một cách đáng kể và kết quả là không khí nóng lên trước khi đi vào động cơ. Để tăng công suất của động cơ, phải đạt được một mục tiêu là đưa thêm nhiều phân tử khí vào trong xilanh mà không làm tăng áp suất khí.
 
Hình ảnh động cơ lắp thêm hệ thống supercharger để tăng áp động cơ   
 
 
Tăng áp là từ chung dùng để chỉ các hệ thống nạp nhiên liệu cưỡng bức. Có thể hiểu đơn giản, tăng áp là hệ thống nén thêm không khí vào buồng đốt, và như vậy có thể đưa vào nhiều nhiên liệu hơn qua đó làm tăng công suất mỗi khi hỗn hợp đốt nổ trong xylanh. 
 
Tăng áp của động cơ ôtô thông thường gồm hai loại turbocharge và supercharge. Thông thường, áp suất nén tăng thêm của tăng áp vào khoảng từ 6-8 pao/inch vuông (psi) – tương đương với 0,408-0,544 atmosphere (at). Do áp suất thông thường trong không khí là 1 at, điều này có nghĩa là tăng áp đã đưa thêm khoảng 50% lượng không khí nữa vào động cơ. Như vậy, theo lí thuyết công suất của động cơ cũng sẽ tăng lên 50% song do hiệu suất không hoàn hảo, công suất của động cơ chỉ tăng thêm từ 30-40%. 

Điểm khác biệt chính giữa hai hệ thống turbocharge và supercharge là nguồn cung cấp năng lượng. Ở supercharge, một dây cua-roa được kết nối với trục khuỷu của động cơ để cung cấp động lực trực tiếp cho tăng áp. Trong trường hợp này, tăng áp là hệ thống kí sinh và trên thực tế động cơ mất đi một chút ít sức mạnh để truyền động lực cho hệ thống nén khí. Tuy nhiên, do được kết nối trực tiếp với trục khuỷu, công suất gia tăng sẽ hiện diện liên tục ở mọi tốc độ tua của động cơ vì thế supercharge không tạo ra hiện tượng “trễ” giống như turbocharge. Supercharge dễ lắp đặt hơn song cũng có giá thành đắt hơn, vì thế, ngày nay các nhà sản xuất ứng dụng turbocharge nhiều hơn. Supercharge có thể xoay với tốc độ lên tới từ 50.000-65.000 vòng/phút (rpm). Ở tốc độ 50.000 rpm, áp suất tăng thêm là từ 6-9 psi. 
Với turbocharger, hệ thống này tận dụng sức mạnh của dòng khí thải. Nhờ bố trí một tuốcbin nằm trên ông thoát khí thải, khi khí thải đi qua sẽ làm cho tuốcbin này quay và nhờ thế nó làm quay máy nén khí vào xylanh của động cơ. 
Theo lí thuyết, turbocharge hiệu quả hơn bởi nó sử dụng năng lượng “thải” trong khí xả làm nguồn cung cấp động năng. Tuy nhiên, nhược điểm của turbocharge là tạo ra một áp suất ngược trong hệ thống xả và tạo ra áp suất nạp thấp hơn cho tới khi động cơ hoạt động ở tốc độ tua cao, đây chính là nguyên nhân dẫn tới động cơ lắp turbocharge ban đầu không “bốc” hay còn gọi là “trễ” - hiện tượng có thể thấy rõ ở động cơ chạy dầu. 
Động cơ dung tích lớn thường có đủ lực mômen xoắn để khiến cho hiện tượng trễ của turbo khó nhận thấy, song điều này có thể kiểm chứng dễ dàng với những động cơ dung tích nhỏ. Tuy nhiên, các nhà sản xuất ôtô ngày nay hầu như đã khắc phục được hiện tượng trễ của turbo bằng cách ứng dụng các phương pháp hay vật liệu mới. 

 

Một trong những giải pháp đơn giản nhất là lắp hai turbo nhỏ thay cho một tuốcbin nén khí lớn. Hệ thống “Bi-turbo” hay tăng áp kép này có tuốcbin đường kính nhỏ hơn, vì thế chúng có thể tăng tốc nhanh hơn trong khi vẫn nén được lượng không khí tương đương với một tuốcbin đường kính lớn. Hiện tượng trễ sẽ khó cảm nhận thấy hơn do tuốcbin nhỏ tăng tốc nhanh hơn. Bổ xung thêm một tuốcbin nữa nghe ra có vẻ phức tạp tuy nhiên trên thực tế các hệ thống tăng áp kép rất dễ ứng dụng với dòng đồng cơ có thiết kế hình chữ V, như V6 hay V8. Đường xả của các động cơ có thiết kế hình chữ V thường đơn giản hơn, mặc dù BMW sử dụng hệ thống tăng áp kép cho cả đông cơ 6 xylanh xếp thẳng hàng. 

Một phương pháp khác để khắc phục tình trạng trễ là sử dụng turbocharge có cánh biến đổi. Tuốcbin này có một hệ thống các cánh có thể dịch chuyển nằm bên trong hộp xoắn ốc gắn với ống xả để thay đổi hướng của dòng khí đi vào rôto xoay của tuốcbin. Nhờ sự điều khiển của máy tính, các cánh lái này sẽ mở để cho phép luồng khí xả đi qua tuốcbin khi xe chạy ở tốc độ ổn định song sẽ đổi hướng của luồng khí sao cho chúng hướng vào rôto của tuốcbin trực tiếp hơn khi tăng ga, quá đó giúp tuốcbin xoay nhanh hơn. Turbocharge có cánh lái dịch chuyển hay có thể thay đổi kết cấu hình học giúp tuốcbin nhỏ có khả năng nén tương đương với các tuốcbin lớn.
Do không khí bị nén, chúng trở nên nóng hơn và giảm bớt tỷ trọng, điều này cũng có nghĩa là không khí sẽ không nở nhiều khi xảy ra phản ứng nổ trong xylanh. Không khí nóng cũng chứa ít ôxy hơn, và vì thế sức mạnh của động cơ cũng sẽ giảm bớt. Để khắc phục nhược điểm này người ta sử dụng một hệ thống làm mát trung gian gọi là Intercooler vốn thường xuyên được kết hợp với tăng áp. Hầu hết Intercooler là các hệ thống làm mát bằng không khí. Ở những hệ thống này, dòng khí nén sẽ buộc phải đi qua một cụm trao đổi nhiệt giống như bộ tản nhiệt và được làm mát nhờ nhiệt độ không khí bên ngoài. Intercooler còn có loại làm mát bằng chất lỏng, theo đó chất lỏng làm mát được bơm qua một phần của hộp trao đổi nhiệt để làm mát luồng không khí nén ở bên trong. Hệ thống làm mát bằng chất lỏng hoạt động ổn định hơn vì chúng không phụ thuộc vào thay đổi nhiệt độ của môi trường, tuy nhiên hệ thống này lại phức tạp và vì thế hầu hết các nhà sản xuất đều sử dụng hệ thống làm mát bằng không khí.
Một lợi ích khác của tăng áp là chúng tạo ra độ xoáy cao khi nén không khí vào xylanh. Chính hiệu ứng xoáy này giúp không khí được trộn đều với nhiên liệu đốt làm tăng khả năng chúng được đốt cháy hoàn toàn. Chính vì thế, các động cơ phun nhiên liệu trực tiếp thường sử dụng tăng áp để cải thiện chu trình đốt trong xylanh.
Nói tóm lại, tăng áp cho phép đưa nhiều hỗn hợp nhiên liệu đốt hơn vào xylanh, vì thế tạo ra sức mạnh lớn hơn trong mỗi chu kỳ nổ. Điều này cho phép các nhà sản xuất có thể sử dụng động cơ 4 xylanh để tạo ra công suất của một động cơ 6 xylanh và qua đó tiết kiệm lượng nhiên liệu tiêu thụ. Theo tính toán, turbocharge có thể cải thiện hiệu suất của một động cơ thông thường thêm 20%, và vì thế, hiện nay các nhà sản xuất ôtô trên thế giới đang tích cực ứng dụng công nghệ turbo trong động cơ hiện đại. Tuy nhiên, do động cơ tăng áp tạo ra công suất lớn hơn trên một đơn vị dung tích, các chi tiết trong động cơ vì thế cũng cần phải bền hơn để có thể chịu đựng được ứng suất cao hơn.
Cấu tạo của bộ Turbocharge
Turbocharge gồm ba phần chính, ở giữa hệ thống là các vòng bi xoay quanh một trục. Mỗi đầu của trục được gắn với một tuốcbin nằm trong một hộp xoắn ốc (giống như vỏ ốc sên). Một tuốcbin được gắn với ống xả để làm quay trục khi dòng khí xả đi qua. Ngược lại, khi trục quay, sẽ làm quay tuốcbin thứ hai (còn được gọi là máy nén) để nén không khí vào trong cổ góp nạp. Turbocharge có thể xoay rất nhanh. Khi ôtô chuyển động thẳng đều trên đường, tuốcbin của turbocharge có thể “chạy không tải” ở tốc độ 30.000 vòng/phút. Nhấn ga và các tuốcbin này có thể tăng tốc lên từ 80.000- 100.000 vòng/phút do có nhiều khí xả nóng hơn được đẩy qua tuốcbin. 

 

Các dịch vụ khác tại Trung Tâm Kỹ Thuật Ô Tô Mỹ Đình THC
Để nhận được báo giá chi tiết và tư vấn kỹ thuật quý khách hàng vui lòng liên hệ:
Cố vấn dịch vụ: Hotline & zalo: 09.64.10.44.44
Tư vấn kỹ thuật: Hotline & zalo: 0962.68.87.68
Email: otomydinhthc@gmail.com

Công Ty TNHH Ô Tô Mỹ Đình THC - "HƠN CẢ SỰ MONG ĐỢI ..."
Xưởng dịch vụ 1: Số 587 Phúc Diễn, Xuân Phương, Nam Từ Liêm, Hà Nội
Xưởng dịch vụ 2: Số 589 Phúc Diễn, Xuân Phương, Nam Từ Liêm, Hà Nội
Website 2: www.shopoto.com.vn
Youtube: https://youtu.be/hFCNQikE_MA
Fanpage: https://www.facebook.com/otomydinhTHC/?ti=as